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Abstract: - Singular Value Decomposition (SVD) and unscented Kalman filter (UKF) are interlaced using the 
Euler angles as the attitude parameter in order to estimate the satellite’s angular motion parameters about center 
of mass.  Magnetometer and sun sensor are used as the vector measurements for SVD in addition to the angular 
rate measurements from rate gyro for UKF; therefore, the output of the SVD shaped the nontraditional 
approach as SVD-aided UKF algorithm using the linear measurements. 
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1  Introduction 
Cooperating magnetometer sun sensor and rate gyro 
utilization in small satellite missions is a common 
method for achieving accurate attitude information. 
By the use of a K alman filter algorithm 
measurement inputs of these sensors can be easily 
integrated in order to estimate the attitude 
parameters of the satellite precisely. At this stage, 
the methods of dynamic filtration (for example 
Kalman filters) may be useful. 
     The traditional approaches to design of Kalman 
filter for satellite attitude and rate estimation use the 
nonlinear measurements of reference directions [1]–
[6]. In nontraditional approach based attitude 
estimation (based on linear measurements) attitude 
angles are found by vector measurements at each 
step. Then these are directly used as measurement 
input for Kalman filter [7]–[14]. Hence 
measurement model is linear in this case, since the 
states are measured directly. In [15], the papers 
using different kinds of approaches are reviewed. 
     Integration of single-frame satellite attitude 
determination methods with Kalman filter is 
presented by [7], [8], in which the algebraic method 
and EKF algorithms are combined to estimate the  
attitude angles and angular velocities respectively.  

 
Attitude determination system use algebraic method 
(2-vector algorithm). This method is based on the 
computing any two analytical vectors in the 
reference frame and measuring these vectors in the 
body coordinated system [16]. As measuring 
devices magnetometers, Sun sensors, and horizon 
scanners/sensors are used. Three different 
algorithms based on Earth’s magnetic field, Sun 
vector, and nadir vector are used. In order to obtain 
the attitude of the satellite with desired accuracy an 
EKF for satellite’s angular motion parameter 
estimation is designed. In [14], it is stated that the 
integrated SVD/EKF can achieve more accurate 
attitude results than the traditional approach because 
of its adaptive way for the covariance values.  
     In this study, an attitude estimation algorithm 
based on the SVD-aided UKF nontraditional 
approach is proposed. The proposed prediction 
algorithm is stepped in for better attitude estimation 
of the satellite. The absolute errors of attitude 
determination and estimation of the satellite’s 
rotational motion parameters are investigated.  
     The structure of this paper is as follows. Section 
2 gives the attitude determination using the vector 
measurements including the mathematical models 
and SVD method. SVD/UKF for satellite attitude 
estimation based on linear measurements 
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(nontraditional approach), and their simulation 
results are presented in Section 3 and 4 respectively. 
Finally, the Section 5 gives a brief summary of the 
obtained results and conclusions. 
 

2 Attitude Determination using Vector 
Measurements 

2.1 Mathematical Models and Vector 
Measurements 

If the kinematic equations of the small satellite are 
derived according to Euler's angles, then the 
mathematical model can be expressed. Here, 7-
dimensional state vector orientation angles (ϕ roll-
x  axis; θ  pitch - y axis; ψ  yaw - z axis), contains 
the angular velocities and the inertial moment on the 
y-axis.  

T

x y zx ϕ θ ψ ω ω ω =    .            (1)                                                                                               

Angular velocities for consistency are expressed 
in the body axis set according to the inertial 
coordinate system. 

,
T

BI x y zω ω ω ω =                           (2) 

Here, BIω  represents the angular velocities of the 
body axis set. Dynamic equations are also obtained 
by the principle of conservation of angular 
momentum. 

( ) ,x
x x y z y z

d
J N J J

dt
ω

ω ω= + −               (3)                                     

( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −               (4)                                    

( ) ,z
z z x y x y

dJ N J J
dt
ω

ω ω= + −              (5)      

xJ , yJ  and zJ  inertial moments, xN , yN  and zN   is 
used for external disturbances affecting the satellite. 
If only the effect of gravity is taken into 
consideration, the external torques can be found as 
follows. 
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13 333
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 −     = − −      −    

 .         (6)    

µ  gravitational constant, 0r distance between Earth 
and satellite, ijA  represents the elements of the 
cosine matrix. 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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− 
 = − + + 
 + − + 

 (7) 

In A  matrix, ( )c ⋅ and ( )s ⋅  are cosine and sinus 
functions. Thus, kinematic equations can be 
expressed in terms of Euler angles as follows. 
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     (8)                             

( )t ⋅ is the tangent function and p , q , r are the 
components of the  BRω  vector. BIω  and BRω  have 
the relationship as, 

0

0
BR BI oAω ω ω

 
 = + − 
  

                              (9)                                                    

oω  orbital angular velocity in the equality of

( )1/23
0/ .o rω µ=  

     The body angular rate vector with respect to the 
inertial axis is measured by the onboard gyros. 
Widely used model for the gyro measurements is 

BI BI gω ω η= + ,                           (10) 

where, BIω  is the measured angular rates of the 
satellite, and gη  is the zero mean Gaussian white 
noise with the characteristic of,  

2
1 2 3 3 1 2( ) ( ) ( )T

g g x gE t t I t tη η σ δ  = −                 (11) 

Here, 3 3xI  is the 3 3×  unit matrix, gσ is the 
standard deviation of each gyro random error and 

( )tδ is the Dirac delta function. 
Magnetometer measurements and their 

corresponding models can be represented by 
assuming that magnetometer calibration has been 
already done with one of the in-orbit or on-ground 
estimation methods, 
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Φ
Φ
Φ

mesB                   (12) 

where ( )1B t , ( )2B t and ( )3B t  represent the Earth 
magnetic field vector components in the orbit frame; 

( ),xB tΦ , ( ),yB tΦ  and ( ),zB tΦ  show the measured 
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Earth magnetic field vector components in the body 
frame as a function of time and varying Euler angles 
vector. mη  is the zero mean Gaussian white noise 
with the characteristic of  

2
1 2 3 3 1 2( ) ( ) ( )T

m m x mE t t I t tη η σ δ  = −  ,             (13) 

mσ is the standard deviation of each magnetometer 
error.   
     One of well-known methods for obtaining the 
Earth magnetic field vector components in the orbit 
frame is using the International Geomagnetic 
Reference Field (IGRF) model. The selected IGRF-
12 model uses predictive secular variation 
coefficients for 2015-2020 period [18].  
     Sun direction in the Earth Centered Inertial (ECI) 
frame can be modelled in terms of the Julian Day (

TDBT ) which is defined using the satellite’s reference 
epoch and the exact time. We first calculate the 
ecliptic longitude of the Sun ( eclipticλ ) and the linear 
model of the ecliptic longitude of the Sun ( ε ) 11). 
Then we can get, the unit Sun direction vector ( ECIS
) in ECI frame as. 

cos
s

cos
sin

in nsi

ecliptic

ECI ecliptic

ecliptic

λ
λ ε
λ ε

 
 =  
  

S .                     (14) 

      Orbital elements from the orbit propagation 
model of the satellite are necessary for transforming 
the unit vector in ECI frame into the orbital frame. 
After that the model for the sun sensor 
measurements can be given as, 

sA η= = +mes b oS S S ,                            (15) 

where, oS is the sun direction vector in the orbit 
frame and bS  are the sun sensor measurements in 
body frame which are corrupted with, sη , the zero 
mean Gaussian white noise with the characteristic of  

2
1 2 3 3 1 2( ) ( ) ( )T

s s x sE t t I t tη η σ δ  = −  .            (16) 

where sσ is the standard deviation of sun sensor 
error. 

2.2  Singular Value Decomposition (SVD) 
One of the most robust point-by-point methods that 
we can use for solving the Wahba’s problem is the 
SVD method. The problem is to find the optimal 
solution for attitude transformation matrix A with 

determinant of +1 that minimizes the loss 
function[3], [19] 

21( )
2 i i i

i
L A a A= −∑ b r ,                     (17) 

where ib  and ir  are set of unit vectors obtained in 
two different coordinates. In this paper, these unit 
vectors represent sun direction and magnetic field in 
satellite orbit frame ( ir ) and body frame ( ib ). ia  is 
non-negative weight for each unit vector 
observations and can be selected as the inverse of 
the variance of measurement errors, 2

sσ
− and 2

mσ
−  for 

sun sensor and magnetometer measurements 
respectively. We can write Eq. (17) in a more 
convenient form as, 

( ) ( )0 tr TL A ABλ= − ,                     (18) 

where,  

0 iaλ = ∑ ,                               (19) 

T
i i iB a= ∑ b r .                           (20) 

Hence, the cost function minimization problem 
reduces into the problem of maximizing the trace, 
( )tr TAB . There are many single frame methods for 

solving this problem. The SVD is one of the most 
accurate, reliable and robust methods amongst 
them12). The matrix B has singular value 
decomposition: 

 [ ]11 22 33diagT T TB U V U V= ∑ = ∑ ∑ ∑     (21) 

where U and V are orthogonal and the singular 
values that obey 11 22 33 0∑ ≥ ∑ ≥ ∑ ≥  . Then we can 
show that the trace is maximized for Eq.(22) and 
optimal transformation matrix can be obtained as 
Eq.(23). 

  diag[1 1 det( )det( )]T
optU A V U V=       (22) 

diag[1 1 det( )det( )] T
optA U U V V=       (23) 

    The accuracy of the estimated optA can be 
evaluated by examining the covariance matrix for 
rotation angle error. If secondary singular variables 
are defined as, 1 11s = ∑ , 2 22s = ∑ , 

( ) ( )3 33s det U det V= ∑  then the covariance matrix 

svdP  is calculated as, 
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1 1 1
2 3 3 1 1 2diag[(s s ) (s s ) (s s ) ] T

svdP U U− − −= + + + .  
(24) 

     In this study, the satellite has two absolute 
sensors (e.g. sun, and magnetic field sensors), 
therefore the SVD-method fails when the satellite is 
in eclipse and two vectors are parallel. In the eclipse 
period, attitude estimations may become reliable if 
the described SVD method is integrated with a 
recursive filtering algorithm as it is discussed in the 
following section. 

 

3 Attitude Estimation using 
Nontraditional Approach (SVD-Aided 
UKF) 
The SVD method and UKF can be integrated for 
having more accurate attitude estimates. Using 
vector measurements at a single time, the SVD 
estimates the attitude, while the UKF incorporates 
the spacecraft dynamics/kinematics information and 
gyro measurements to achieve better estimation 
performance. The combined SVD/UKF method 
filters and increases the accuracy of the attitude 
estimations coming from the SVD.  

 

Fig. 1.  SVD/UKF attitude estimation scheme. 

      Two methods are integrated by treating the 
attitude estimations coming from the SVD method 
as the Euler angle vector measurements for the 
UKF. The measurement covariance matrix for the 
UKF, R, is obtained by processing the svdP , the 
covariance matrix for rotation angle errors. 
     The scheme for the integrated SVD/UKF method 
is given in Fig.1. At the beginning, the SVD method 
provides the attitude estimations in Euler angles 
( )Φ svd  using magnetometer ( )mesB  and sun sensor 

( )mesS  measurements. In addition to have the 
dynamic mathematical model of the satellite’s 
rotational motion, the rate gyro measurements 
( )mesω  are used in order to estimate the angular 

velocity of the nanosatellite. So, together with the 
gyro measurements ( mesω ), angle determinations 
from SVD are used as measurement inputs to the 
UKF.  
     The mathematical expressions for UKF can be 
given. The essence of the UKF is the unscented 
transform, a deterministic sampling technique that 
we use for obtaining a minimal set of sample points 
(or sigma points) from the a priori mean and 
covariance of the states. These sigma points go 
through a nonlinear transformation. The posterior 
mean and the covariance are determined using the 
transformed sigma point [5].  
     The UKF is derived for discrete-time nonlinear 
equations, so the system model is given by; 

( 1) ( ( ), ) ( )x k f x k k w k+ = + ,                  (25a) 

( ) ( ) ( )y k Hx k v k= + .                         (25b) 

Here, ( )x k is the state vector and ( )y k  is the 
measurement vector. Moreover ( )w k  and ( )v k are 
the process and measurement error noises, which are 
assumed to be Gaussian white noise processes with 
the covariance of  ( )Q k  and ( )R k respectively, H is 
the measurement matrix. 
     The initial step of the UKF algorithm is 
determining the 2 1n +  sigma points with a mean of 
( )x̂ k k  and a co variance of ( )P k k . For an n-

dimensional state vector, these sigma points are 
obtained by  

 ( ) ( )0 ˆk k k k=x x  ,                            (26a)  

( ) ( ) ( ) ( )( )ˆk k k k n P k kγ
γ

κ= + +x x , (26b)     

  ( ) ( ) ( ) ( )( )ˆn k k k k n P k kγ
γ

κ+ = − +x x ,    (26c) 

where, ( )0 k kx , ( )k kγx and ( )n k kγ +x  are sigma 
points, n  is the state number, and κ is the scaling 
parameter which is used for fine tuning. 

( ) ( )( )n P k k
γ

κ+  corresponds to the thγ  column of 

the indicated matrix and γ  is given as 1 nγ =  .  
     The next step of the UKF procedure is evaluating 
the transformed set of sigma points for each of the 
points by,   

( ) ( )1 , .l lk k f k k k + =  x x      0 2l n=       (27)    

Thereafter, these transformed values are utilised for 
gaining the predicted mean and covariance [11]. 
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( ) ( ) ( )
2

0
1

1 1ˆ 1 1 1
2

n

l
l

k k k k k k
n

κ
κ =

 + = + + + 
+  

∑x x x ,  

(28a)

( )

( ) ( ) ( ) ( ){ 0 0

11

ˆ ˆ1 1 1 1
T

P k k
n

k k k k k k k k

κ

κ

+ = ×
+

   + − + × + − +   x x x x

( ) ( ) ( ) ( )

( )

2

1

1 ˆ ˆ1 1 1 1
2

n T

l l
l

k k k k k k k k

Q k
=

   + + − + + − +     
+

∑ x x x x

      (28b) 
Here, ( )ˆ 1k k+x is the predicted mean and ( )1P k k+

is the predicted covariance. Furthermore, the 
predicted observation vector is,  

          ˆ ˆ( 1/ ) ( 1) ( 1/ )y k k H k x k k+ = + + .         (29)              

After that, the observation covariance matrix is 
determined as, 

( 1/ ) ( 1) ( 1/ ) ( 1)T
yyP k k H k P k k H k+ = + + + ,      (30) 

On the other hand, the cross-correlation matrix 
can be obtained as, 

( 1/ ) ( 1/ ) ( 1)T
xyP k k P k k H k+ = + +                  (31) 

Following part is the update phase of UKF 
algorithm. At that phase, first by using 
measurements, ( )1y k + , the residual term (or 
innovation sequence) ( 1)kν +  is found as the 
difference between the actual observation and the 
predicted observation: 

 ( ) ( ) ( )ˆ1 1 1 ,k y k y k kν + = + − +          (32) 

The innovation covariance is,  

( ) ( ) ( )1 1 1

( 1) ( 1/ ) ( 1) ( 1)
vv yy

T

P k k P k k R k

H k P k k H k R k

+ = + + +

= + + + + +
     (33) 

Here, ( )1R k + is the measurement noise covariance 
matrix. Kalman gain is computed via equation of, 

( ) ( ) ( )11 1 1 .xy vvK k P k k P k k−+ = + +         (34) 

At last, updated states and covariance matrix are 
determined by, 

( ) ( ) ( ) ( )ˆ ˆ1 1 1 1 1 ,x k k x k k K k kν+ + = + + + +     (35) 

( ) ( )
( ) ( ) ( )1

1 1 1

                       1 / 1 1/ .T
xy xy

P k k P k k

P k k P k k P k kνν
−

+ + = +

− + + +

          (36) 

 
( ) ( ) ( ) ( ) ( )1 1 1 1 1 1T

vvP k k P k k K k P k k K k+ + = + − + + +

(37)           

Here, ( )ˆ 1 1x k k+ + is the estimated state vector and 

( )1 1P k k+ + is the estimated covariance matrix. 

4  Simulation Results 
Simulations are performed for evaluating the 
attitude determination algorithm for a hypothetical 
nanosatellite. The orbit of the satellite is assumed to 
be at Low Earth Orbit (LEO) with circular orbit. 
    For the magnetometer measurements, the sensor 
noise is characterized by zero mean Gaussian white 
noise with a standard deviation of 0.008mσ = and as 
mentioned we assume that the magnetometers are 
calibrated against sensor biases, scale factors etc. 
Moreover, the standard deviation for the sun sensor 
noise is taken as 0.002sσ = (for unit vector 
measurements) and the sun sensor is also calibrated 
against biases.  
     Algorithm runs for 1200 sec, and the whole 
algorithm including the SVD, models, and UKF is 
propagated with a sampling time of 0.1st∆ = .  

 

Fig. 2.  Attitude estimation of the SVD, and 
SVD/UKF algorithm with respect to actual 

simulation values. 
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In Fig. 2, the estimations by SVD and SVD/UKF 
are given with the actual values. The differences 
between the estimations can be seen more clear 
from the zoomed interval next to each panel in Fig. 
2. Fig. 3 demonstrates the estimation error changes 
in time for both methods. Here, SVD only method 
estimates the attitude angles of the nanosatellite 
about 5 deg accuracy. On the other hand, SVD/UKF 
seen in Fig. 4 has the capability to estimate the 
attitude under 0.2 de g. From those simulation 
results, it can be said that SVD/UKF can estimate 
the attitude angles accurately.  

The measurement noise covariance (R) of the 
UKF which is taken same as t he rotation angle 
estimation covariance of the SVD ( Psvd ), plays an 
important role for the estimations.  

 

Fig. 3.  Attitude estimation errors of SVD and 
SVD/UKF methods. 

 

Fig. 4.  Attitude estimation errors of SVD/UKF 
method. 

The angular velocities of the nanosatellite are 
estimated by SVD/UKF and shown in Fig. 5 with 
the actual values. As also seen in Fig. 6, the 
presented algorithm estimates the angular rates 
accurately after about 180 s transient period. 

All in all, the accuracy performance of the 
proposed filter is well for estimating both attitude 
and rates of the nanosatellite. 

 

Fig. 5.  Angular rate estimation of the SVD/UKF 
algorithm with respect to actual simulation values. 

 

Fig. 6.  Angular rate estimation errors of SVD/UKF 
method. 

5  Discussion of SVD-Aided UKF 
Properties 
Several properties of the proposed SVD-aided UKF 
attitude estimation algorithm are discussed in this 
section. 
       In the proposed approach, UKF is designed for 
the linear measurement equations. It reduces the 
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complexity of filter design and increase the 
accuracy. For this purpose, robustness against 
measurement faults and an eclipse period cases are 
considered. 
      An important advantage of the SVD-aided UKF 
algorithm in addition to having linear measurements 
is having the measurement variance updated at each 
estimation step which makes the filter adaptive. This 
causes an increase on  the covariance matrix of 
measurement noise R  if there is a fault on the 
measurement. The time series of the attitude 
estimations including an eclipse period (from 400 to 
800 s correspond to the eclipse) is shown in Fig. 7. 
Here, the output of the Sun sensor is zero (zero 
output sensor fault occurs). Therefore, the diagonal 
elements of matrix R  increase significantly (see 
Fig. 8).  

 

Fig. 7. Attitude estimation errors of the SVD, and 
SVD/UKF algorithm including an eclipse period. 

 

 

Fig. 8. Measurement noise covariance diagonal 
elements in case of zero output sensor fault. 

      

 
        Fig. 9. Measurement noise covariance diagonal 
elements in case of noise increment sensor fault. 
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measurement noises for each axis are increased 10 
times between 500-600 s. The diagonal elements of 
the SVD-aided UKF measurement noise covariance 
matrix for this case are presented in Fig. 9. If a fault 
occur on the measurement system like here, R  
starts to oscillate (with an increased range for noise 
increment type of fault). As a result, the estimation 
errors of the attitude angles by SVD-aided UKF are 
not affected significantly as SVD does from the 
sensor fault and the algorithm works well in and 
after this period (see Fig. 10). However, it should be 
noted that if the period is not sufficiently short, as it 
was in our case, then it might cause gross estimation 
errors which are increasing in time. 
 

 
Fig. 10. Attitude estimation errors of the SVD, and 

SVD/UKF algorithm in case of noise increment 
sensor faults. 

5  Conclusion 
Singular Value Decomposition (SVD) method and 
Unscented Kalman Filter (UKF) are integrated to 
estimate the attitude and attitude rates for a 
nanosatellite. At the first phase, the SVD algorithm 

estimates Euler angles. Then these estimates are 
used as measurement inputs for the UKF together 
with the gyro measurements. Demonstrations show 
that the SVD/UKF is capable to estimate the attitude 
angles and rates accurately. The properties of the 
presented algorithm are examined for zero-output 
and noise increment fault cases. It is concluded that 
the adaptive tuning of the SVD aided UKF provide 
the filter to be robust against measurement faults. 
For further studies, the attitude and rate estimation 
accuracies can be examined with considering only 
the kinematics model and without the dynamic 
model in the filter. 
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